Preserved Modular Network Organization in the Sedated Rat Brain
نویسندگان
چکیده
Translation of resting-state functional connectivity (FC) magnetic resonance imaging (rs-fMRI) applications from human to rodents has experienced growing interest, and bears a great potential in pre-clinical imaging as it enables assessing non-invasively the topological organization of complex FC networks (FCNs) in rodent models under normal and various pathophysiological conditions. However, to date, little is known about the organizational architecture of FCNs in rodents in a mentally healthy state, although an understanding of the same is of paramount importance before investigating networks under compromised states. In this study, we characterized the properties of resting-state FCN in an extensive number of Sprague-Dawley rats (n = 40) under medetomidine sedation by evaluating its modular organization and centrality of brain regions and tested for reproducibility. Fully-connected large-scale complex networks of positively and negatively weighted connections were constructed based on Pearson partial correlation analysis between the time courses of 36 brain regions encompassing almost the entire brain. Applying recently proposed complex network analysis measures, we show that the rat FCN exhibits a modular architecture, comprising six modules with a high between subject reproducibility. In addition, we identified network hubs with strong connections to diverse brain regions. Overall our results obtained under a straight medetomidine protocol show for the first time that the community structure of the rat brain is preserved under pharmacologically induced sedation with a network modularity contrasting from the one reported for deep anesthesia but closely resembles the organization described for the rat in conscious state.
منابع مشابه
The Effects of L-arginine on the Hippocampus of Male Rat Fetuses under Maternal Stress
Introduction: Prenatal stress has deleterious effects on the development of the brain and is associated with behavioral and psychosocial problems in childhood and adulthood. This study aimed to determine the protective effect of L-arginine on fetal brain under maternal stress. Methods: Twenty pregnant Wistar rats (weighting 200-230 g) were randomly divided into 4 groups (n=5 for each group). T...
متن کاملScaling in topological properties of brain networks
The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction,...
متن کاملAge-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI
Normal aging is accompanied by various cognitive functional declines. Recent studies have revealed disruptions in the coordination of large-scale functional brain networks such as the default mode network in advanced aging. However, organizational alterations of the structural brain network at the system level in aging are still poorly understood. Here, using cortical thickness, we investigated...
متن کاملA hierarchical network organization helps to retain comparable oscillation patterns in rats and human-sized brains
Activity in coupled systems is often oscillatory, for example, the firing pattern of neuronal populations. Whereas these oscillations have been studied predominantly in local circuits, here we show how the topology of large-scale networks, leading to large feedback loops, influences oscillations in the resting state. We find that the hierarchical modular organization of neuronal networks suppor...
متن کاملChanges in global and regional modularity associated with increasing working memory load
Using graph theory measures common to complex network analyses of neuroimaging data, the objective of this study was to explore the effects of increasing working memory processing load on functional brain network topology in a cohort of young adults. Measures of modularity in complex brain networks quantify how well a network is organized into densely interconnected communities. We investigated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014